PHYSICAL CHEMISTRY

Total Marks: 29

Max. Time: 31 min.

Topic: Gaseous State

Type of Questions

Single choice Objective ('-1' negative marking) Q.1 to Q.3 Multiple choice objective ('-1' negative marking) Q.4 to Q.6

Subjective Questions ('-1' negative marking) Q.7 to Q.8

M.M., Min.

[9, 9]

(3 marks, 3 min.)

(4 marks, 4 min.) [12, 12]

(4 marks, 5 min.) [8, 10]

1. Which of the following is correct order of temperature shown in the above graph Z Vs P for the same gas:

(B)
$$T_1 < T_2 < T_3 < T_4$$

(C)
$$T_1 < T_2 < T_4 < T_3$$

(B)
$$T_1 < T_2 < T_3 < T_4$$

(D) $T_3 < T_4 < T_2 < T_1$

- 2. A real gas most closely approaches the behaviour of an ideal gas at:
 - (A) low pressure & low temperature
- (B) high pressure & high temperature
- (C) low pressure & high temperature
- (D) high pressure & low temperature
- 3. What is the correct increasing order of liquifiability of the gases shown as in above graph:

(A) $H_2 < N_2 < CH_4 < CO_2$

(B) $CO_2 < CH_4 < N_2 < H_2$

(C) $H_2 < CH_4 < N_2 < CO_2$

- (D) $CH_4 < H_2 < N_2 < CO_2$
- 4.* Z vs P graph is plotted for 1 mole of three different gases X, Y and Z at temperature T₁.

Then, which of the following may be correct if the above plot is made for 1 mole of each gas at T₂ temperature (T₂ < T₁):

- **5.*** Which of the following statements regarding compressibility factor (Z) is/are correct:
 - (A) In the lower pressure region, value of Z initially decreases on increasing pressure and then increases, however H_2 and He gases are exception to this.
 - (B) Z for an ideal gas is greater than one.
 - (C) Z for a non-ideal gas can be greater than or less than unity depending on temperature and pressure.
 - (D) When Z < 1, intermolecular attraction dominates over intermolecular repulsion.
- 6.* The Vander waal's equation of state for a non-ideal gas can be

rearranged to give $\frac{PV}{RT} = \frac{V}{V-b} - \frac{a}{VRT}$ for 1 mole of gas. The

constants a & b are positive numbers . When applied to $\rm H_2$ at 80K, the equation gives the curve as shown in the figure. Which one of the following statements is(are) correct :

- (A) At 40 atm, the two terms V/(V b) & a/VRT are equal.
- (B) At 80 atm, the two terms V/(V b) & a/VRT are equal.
- (C) At a pressure greater than 80 atm, the term V/(V-b) is greater than a/VRT.
- (D) At 60 atm, the term V/(V-b) is smaller than $1+\frac{a}{VRT}$.
- 7. Compressibility factor (Z) for N_2 at -23° C and 820 atm pressure is 1.9. Find the number of moles of N_2 gas required to fill a gas cylinder of 95 L capacity under the given conditions.
- Find the temperature at which the translational kinetic energy of hydrogen atom is equal to the transition energy of electron between $n_1 = 1$ and $n_2 = 2$ levels. (Take: Boltzmann constant $K = 1.36 \times 10^{-23}$ J/K.)

Answer Key

DPP No. #34

1. (A

(ACD)

(C)

3.

(A)

4."

(ACD)

5.*

6

(CD)

7.

2000

8.

80000 K

Hints & Solutions

DPP No. # 34

1.
$$T_4 < T_3 < T_2 < T_1$$

- 2. A real gas behaves idealy under conditions of low pressure and high temperature.
- Order of Vander waals constant CO₂ > CH₄ > N₂ > H₂
 ∴ ease of liquification CO₂ > CH₄ > N₂ > H₂
- 5.* Z for an ideal gas is equal one.

6. Clearly, from the graph at 80 K =
$$\frac{PV}{RT}$$
 = 1 and at 60K, Z < 1

7.
$$Z = \frac{PV}{nRT}$$
 \Rightarrow $n = \frac{PV}{ZRT}$

8. Translational energy =
$$(3/2) \text{ kT}$$

= $(3/2) \text{ kT} = \text{hcR}_{\text{H}} ((1/1) - (1/4))$
= $(3/2) \text{ T} = 6.626 \times 10^{-34} \times 2.996 \times 10^{10} \times 109679 \times (3/4) \frac{6.02 \times 10^{23}}{8.315}$
= 118331.1 K

 $T = 118331.1 \times 2/3 = 80000 K.$

